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ABSTRACT
The need for solving weighted ridge regression (WRR) prob-
lems arises in a number of collaborative filtering (CF) algo-
rithms. Often, there is not enough time to calculate the
exact solution of the WRR problem, or it is not required.
The conjugate gradient (CG) method is a state-of-the-art
approach for the approximate solution of WRR problems.
In this paper, we investigate some applications of the CG
method for new and existing implicit feedback CF models.
We demonstrate through experiments on the Netflix dataset
that CG can be an efficient tool for training implicit feed-
back CF models.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning—parameter learn-
ing

General Terms
Algorithms, Experimentation

Keywords
conjugate gradient method, collaborative filtering

1. INTRODUCTION
Recommender systems suggest personalized recommenda-

tions on items to users. Collaborative filtering (CF) ap-
proaches exploit user event history related to items to model
user preferences. Though the CF literature discusses over-
whelmingly the explicit feedback case [8], when users typi-
cally rate items, in many application domains recommender
systems have to infer the user preference from implicit user
feedback [1, 2], such as the presence or absence of purchase,
view, rent or search events.
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In this paper, we investigate thus the implicit feedback
CF problem. Many CF algorithms require to solve weighted
ridge regression (WRR) problems. Often, there is not enough
time to calculate the exact solution, therefore approximative
WRR solvers are necessary. The paper compares two ap-
proximate approaches: coordinate descent (CD), and conju-
gate gradient (CG) methods. While the former was already
used in CF applications (see e.g. [6]), to our best knowledge,
CG has not yet been applied.

We show that CG has advantages over CD: (1) CG tends
to have shorter iteration time and this allows for various
running time–accuracy trade-offs [6]. (2) CG also performs
substantially better on large, sparse WRR problems that
appear e.g. in the implicit version of Paterek’s NSVD1 ap-
proach.

1.1 Notation
The following notation will be used in the paper. N

and M denote the number of users and items. We use
u ∈ {1, . . . , N} as index for users, and i, j ∈ {1, . . . , M}
as indices for items. The rating of user u on item i is rui,
and its prediction is r̂ui. Ratings rui are arranged in the
matrix R; T denotes the set of (u, i) indexes of R where (a)
a rating is provided (for explicit feedback), (b) a positive
feedback is provided (for implicit feedback). T ± denotes
each (u, i) pair of R, i.e. |T ±| = N ·M . ru ∈ R

M×1 denotes
the u-th row of R. r̄i ∈ R

N×1 denotes the i-th column of
R. I = {1, . . . , M} and U = {1, . . . , N} denote the set of
items and users respectively. Iu = {i : (u, i) ∈ T } denotes
the set of items for which a positive feedback is provided by
user u. nu = |Iu| denotes the number of positive feedbacks
of user u. We assume that users give feedback for items at
most once. Let ni denote the number of positive feedbacks
for item i.

2. WEIGHTED RIDGE REGRESSION
Here we briefly revisit WRR and some common solution

techniques for it. In the WRR problem we have a dataset
(x1, y1, c1), . . ., (xn, yn, cn), where xi ∈ R

d is the i-th input,
yi is its corresponding target, and ci ∈ R is the importance
value associated with the i-th example. We are also given
the nonnegative regularization coefficients λ1, . . . , λd ∈ R.

The inputs are arranged in the matrix X ∈ R
n×d, and

the targets in the vector y ∈ R
n. Let us denote the j-

th column of X by x̄j . The importance values and the
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regularization coefficients define the diagonal matrices C =
diag(c1, . . . , cn) ∈ R

n×n and Λ = diag(λ1, . . . , λd) ∈ R
d×d.

WRR seeks the minimum of the error function

g(w) =
n∑

i=1

(
ci(x

T
i w − yi)

2 +
1

n

d∑
j=1

λjw
2
j

)

= (Xw − y)T C(Xw − y) +
1

2
wT Λw.

Let us introduce the notation A = XT CX + Λ and b =
XT Cy. Note that A is symmetric positive semidefinite, and
if every regularization coefficient λj is positive, then it is
also positive definite. Using A and b the error function can
be written as g(w) = wT Aw− 2wT b + yT Cy. The gradient
of g is ∇g(w) = 2Aw − 2b, and the optimal w is

w∗ = A−1b.

The straightforward way of calculating w∗ is constructing
the matrix A and the vector b, and then solving Aw = b via
Cholesky decomposition. The construction of A requires
O(NXd) operations, where NX is the number of nonzero
elements in X. Note that A is dense in general, even if
X is sparse. The total time and space requirement of the
Cholesky decomposition based approach for solving WRR is
O(NXd + d3) and O(NX + d2).

2.1 Approximate WRR
Some approaches to perform faster, approximate WRR

are the following:
• Coordinate descent: In each step, g is minimized in

one coordinate of w.
• Gradient descent: In the k-th step, g is minimized

along the direction of the negative gradient:
wk+1 = arg minαwk − α∇g(wk).
• Conjugate gradient method: In each step, g is mini-

mized along a search direction. The search directions
are chosen so that w∗ is reached in at most d steps.

2.2 Preconditioning
Preconditioning is an important technique in iterative meth-

ods for solving systems of linear equations. The idea of
preconditioning is to solve (M−1A)w = (M−1b) instead of
Aw = b, where the nonsingular matrix M ∈ Rd×d is called
the preconditioner. The role of the preconditioner is to re-
duce the condition number of the system at a relatively low
cost, and therefore accelerate the convergence of the itera-
tive solver.

In order to define two simple preconditioners for sym-
metric systems, let us partition A into three parts as A =
AL + AD + AT

L, where AL is a lower triangular matrix con-
taining the lower triangular part of A, and AD is a diagonal
matrix containing the diagonal part of A. In the case of
the Jacobi preconditioning, M = AD. In the case of sym-
metric successive over-relaxation (SSOR) preconditioning,
M = (AD + AL)A−1

D (AD + AT
L).

2.3 Algorithms for approximate WRR

2.3.1 Coordinate descent
Coordinate descent (CD) is a natural technique to per-

form approximate minimization. The efficiency of CD based
WRR solvers for certain collaborative filtering models was
shown in [6]. The pseudocode of CD for WRR is as follows:

Input: X ∈ R
n×d, y ∈ R

n, C ∈ R
n×n, Λ ∈ R

d×d,
w0 ∈ R

d, E ∈ N

Output: w ∈ R
d

w← w0, r ← y −Xw
for k← 1, . . . , E do

if ‖r‖ is small enough then return w;
for j ← 1, . . . , d do

Δwj ← (x̄T
j Cr − λjwj)/(x̄

T
j Cx̄j + λj)

wj ← wj + Δwj , r ← r −Δwjx̄j

end

end

Algorithm 1: Coordinate descent method for WRR

The method can be applied both for dense and sparse X
matrices. The usual choice for the initial solution is w0 = 0.
An advantage of starting from the zero vector is that no
matrix-vector multiplication is needed for determining the
initial r.

The time requirement of the algorithm is O(NXE), where
E is the number of iterations. The space requirement of the
algorithm is O(NX ). Note that our version of CD is slightly
more efficient than the one described in [6], since it needs
only 2 iterations over the examples in the innermost loop
instead of 3.

2.3.2 Conjugate gradient method
The conjugate gradient (CG) method [3] is a long known

yet state-of-the-art iterative method for solving the linear
system Aw = b, where A is symmetric positive definite.
We recall that in the case of WRR, A and b are obtained
as A = XT CX + Λ and b = XT Cy. The pseudocode of
preconditioned CG for solving Aw = b is the following:

Input: A, M ∈ R
d×d, b, w0 ∈ R

d×1, E ∈ N

Output: w ∈ R
d

w← w0, r ← b−Aw, z ←M−1r, p← z
for k← 1, . . . , E do

if ‖r‖ is small enough then return w;
γ ← rT z, α← γ/(pT Ap)
x← x + αr, r ← r − αAp, z ←M−1r
β ← γ/(rT z), p← z + βp

end

Algorithm 2: Preconditioned conjugate gradient
method for solving Aw = b.

Note that matrix A is never used directly. It is enough if
we can calculate the product of A with an arbitrary vector.

The computationally most expensive step of the algorithm
is the matrix-vector multiplication Ap, that has to be evalu-
ated once in each iteration. In the case of WRR, the product
Ap can be calculated in O(NX ) time as Ap = XT (C(Xp))+
Λp. The time requirement of the algorithm is O(NXE), and
the space requirement is O(NX ). Again, the cost of allow-
ing an arbitrary w0 instead of the zero vector is an extra
matrix-vector multiplication.

An important property of the CG method is that the
search directions p0, . . . , pE form an A-conjugate system,
meaning that pT

j Apk = 0, if j �= k. This property implies
that the solution of the k-th iteration minimizes f(w) =
wT Aw−2wT b in the affine subspace w0+span{p0, p1, . . . , pk−1}.
As a consequence, the CG method finds the exact solution
w∗ in at most d iterations.

For comparison purposes, we also define here the gradient
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(G) method that is considered a less effective WRR solver
than CG. It can be obtained from CG, by using β = 0 in
every iteration.

3. WRR BASED CF METHODS

3.1 Matrix factorization
Matrix factorization (MF) approaches for CF approximate

the rating matrix R as the product of two lower rank matri-
ces:

R ≈ PQT ,

where P ∈ R
N×K is the user feature matrix, Q ∈ R

M×K is
the item feature matrix, K is the number of features that
is a predefined constant, and the approximation is only per-
formed at (u, i) ∈ T positions. If the last column of P and
the penult column of Q are constant, then we get an MF
model with user and item bias [5]. A training algorithm for
the plain MF model can be easily modified to handle this
case, therefore we do not introduce separate parameters for
biases.

The prediction formula for user u and item i is

r̂ui = pT
u qi,

where pu ∈ R
K the u-th row of P and qi ∈ R

K is the i-th
row of Q.

The first implicit feedback version of the MF model was
introduced by Hu et al. [4]. Their method is a weighted least
squares approach, meaning that a squared error is defined for
each user-item pair, and the weighted sum of squred errors
is minimized. Another solution to obtain implicit feedback
MF is to formulate training as a ranking optimization prob-
lem [7]. The second approach contains fewer assumptions
than the first, however, it also has a disadvantage: ranking
optimization is in general harder than solving least squares.

This paper follows the path of Hu et al. and defines the fol-
lowing least squares cost function for the implicit MF model:

g(P, Q) =
∑

(u,i)∈T

(
cui(r̂ui − rui)

2 + λP ‖pu‖2 + λQ‖qi‖2
)
.

Here cui denotes the importance weight associated with the
(u, i)-th element of the matrix. Hu et al. assume that cui

and rui values are constant, except at the positions of posi-
tive implicit feedback. Let c0 and r0 denote these constant
values.

Since g is a nonconvex function of (N + M)K variables,
its exact minimization is difficult. Hu et al. proposed an
alternating least squares approach for training the implicit
MF model efficiently. The key idea of their approach is to
alternate between the minimization of g in P and Q. In
a naive implementation, one would minimize P as follows:
pu ← (QT CuQ + nuλP I)−1(QT Curu), where Cu ∈ R

M×M

is a diagonal matrix, generated from cui values of user u.
Hu et al. propose the following speed-up: Let u = 0 de-

note a user who has no positive implicit feedback. we can
precompute values QT C0Q and QT C0r0 for this user. For
an arbitrary user u, the number of differences between C0

and Cu is small, since users give feedback only on a small
subset of items. We can efficiently compute QT CuQ by
QT C0Q + QT (Cu − C0)Q, i.e. we need to consider only the
differences between the two users.

3.2 NSVD1
Paterek introduced an interesting asymmetric factor model

for explicit feedback, called NSVD1 [5]. Here we adapt
this model for implicit feedback. The free parameters of
this model are two sets of item feature vectors (q1, . . . , qM ,
w1, . . . , wM ∈ R

K).1 The prediction of the (u, i)-th rating
is calculated as the following:

r̂ui = pT
u qi,

where: pu = su

∑
j∈Iu

wj , su = (nu + 1)−
1
2

The error function associated with the model is the same
as in the case of MF. The difference is that now P is not a
parameter but it is the function of W and the training data.
Again, the error function is nonconvex which makes its ex-
act minimization difficult. Here we present an approximate
solution which is based on IALS.

Let W ∈ R
M×K denote the matrix of wj vectors. Let

B ∈ R
N×M a matrix with elements [B]ui = ruisu. With

this notation, P = BW . Note that B is a sparse matrix.
During the optimization we have three sets of parameters:
P , Q and W . The proposed algorithm is the following:
• For e = 1, . . . , I :

1. Q-step: For i ∈ I: qi ←WRR(P, r̄i, c̄i, niλQI).

2. P-step: For u ∈ U : pu ←WRR(Q, ru, cu, nuλP I).

3. W-step: For k ∈ K: wk ←WRR(B, p̄k, 1, λW I).

4. For u ∈ U : pu ← pu = su

∑
j∈Iu

wj

The first two steps are the steps of IALS [4]. The first step
optimizes Q in the equation R ≈ PQT . Here r̄i ∈ R

N×1

and ru ∈ R
M×1 are the i-th column and the u-th row of

R, respectively. The vectors ci ∈ R
N×1 and cu ∈ R

M×1

are generated from the respective cui values. The WRR al-
gorithm can be any weighted ridge regression solver, and
vectors ri and ci need not be computed from scratch be-
tween consecutive invocations, because only a small fraction
of them changes.

The second step is very similar to the first step, except
that it optimizes only P . The third step is different: it
optimizes only W via the P ≈ BW approximation. Here
p̄k ∈ R

N×1 is the k-th column of P . Here, the dimension
of the input is M , which is often very large (a typical value
is 20 000), however, the input is sparse. In this step, the
weights of weighted ridge regression (the third argument of
WRR) are constant 1. Note that W-step aims at a better
approximation of P , not R.

4. EXPERIMENTS
We compared our proposed CG based training methods

with other approaches on an implicit version of the well-
known Netflix dataset. The implicit rating matrix was de-
fined by assigning 1 with confidence 100 to user-item pairs
with a Netflix rating value 5, and 0 with confidence 1 to
other user-item pairs. We used the Netflix training set mi-
nus the Netflix probe set for training, and the Netflix probe
set for testing.

The WRR solvers included in the experiments were the co-
ordinate descent (CD), the gradient (G), the conjugate gra-
dient (CG), and the Cholesky-factorization based method.
The evaluation metrics were:

1Again, we do not introduce separate parameters for biases.
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Table 1: Recall values for implicit MF using different
preconditioners (K = 20)

# None Jacobi SSOR
G 0.3600 0.4416 0.4440

CG 0.4407 0.4444 0.4438

• TrTime: CPU time in seconds needed for one epoch
of training.
• Recall1%: For each user-item pair (u, i) of the test

set, we calculate the predicted rating of user u for ev-
ery item, and rank the items based on these values.
Recall1% is the the relative frequency of item i being
in the top 1 % of the ranking.

In the first experiment we compared different precondi-
tioners on an implicit MF model with K = 20 factors. The
measured recall values are shown in Table 1. The results
are much better with preconditioning than without it. Since
SSOR needed about twice as much time per iteration as Ja-
cobi, and they achieved similar results, we opted for Jacobi
preconditioning.

Next, we compared different WRR solvers for training the
implicit MF model and the implicit NSVD1 model. The
metaparameters of the model were set to λP = λQ = λB =
0.05. The number of internal iterations in the WRR solvers
was E = 2, while the number of external iteration steps, in
general, the number of P-steps, was I = 10.

Table 2: TrTime values for implicit MF (sec)
# features CD G CG Chol

5 91.7 84.0 90.4 93.7
10 107.8 94.1 97.0 117.4
20 133.0 110.5 110.3 176.1
50 233.2 164.0 149.6 493.8

Table 3: Recall1% values for implicit MF
# features CD G CG Chol

5 0.3756 0.3775 0.3797 0.3794
10 0.4249 0.4222 0.4249 0.4257
20 0.4435 0.4416 0.4444 0.4452
50 0.4543 0.4510 0.4557 0.4536

The results for implicit MF are summarized in Tables 2
and 3. It can be seen that the G method had similar TrTime
as CG, but it was worse in terms of recall. The CD method
produced similar recall to CG, but its TrTime was higher.
The Cholesky method was accurate, but it was the slowest
approach.

The results for implicit NSVD1 are tabulated in Tables 4
and 5. The W-step of NSVD1 training was done by a CG
based WRR solver, run for 20 iterations. We also tried to
compute the W-step with a CD based solver, but it produced
a much worse reconstruction of P .

The first row of the tables now indicates the method ap-
plied for computing the P-step and the Q-step. The TrTime
value of the different approaches was quite similar. This is
because here the computationally dominant part of training
is the W-step.

5. CONCLUSION
Collaborative filtering algorithms often require the solu-

tion of weighted ridge regression problems. Here we pro-
posed the use of the conjugate gradient method as an ap-

Table 4: TrTime values for implicit NSVD1 (sec)
# features CD G CG

5 126 119 122
10 202 203 204
20 377 353 361
50 860 801 794

Table 5: Recall1% values for implicit NSVD1
# features CD G CG

5 0.3704 0.3721 0.3729
10 0.3978 0.4037 0.4028
20 0.4141 0.4207 0.4213
50 0.4333 0.4371 0.4463

proximate WRR solver for such problems. We showed that
with increasing factor value, the training time of the CG is
typically smaller than of other WRR solvers, while its ac-
curacy measured in terms of recall is on par or even better.
We demonstrated our results using the Netflix Prize dataset
with implicit feedback data with matrix factorization (ALS)
and implicit NSVD1.

6. REFERENCES
[1] K. Ali and W. van Stam. TiVo: making show

recommendations using a distributed collaborative
filtering architecture. In Proc. of the 10th ACM
SIGKDD Int. Conf. on Knowledge Discovery and Data
Mining, KDD ’04, pages 394–401, New York, NY, USA,
2004. ACM.

[2] L. Baltrunas and X. Amatriain. Towards
time-dependant recommendation based on implicit
feedback. In Proc. of the RecSys 2009 Workshop on
Context-aware Recommender Systems, 2009.

[3] M.R. Hestenes and E. Stiefel. Methods of conjugate
gradients for solving linear systems. Journal of Research
of the National Bureau of Standards, 49:409–436, 1952.

[4] Y. Hu, Y. Koren, and C. Volinsky. Collaborative
filtering for implicit feedback datasets. In Proc. of
ICDM-08, 8th IEEE Int. Conf. on Data Mining, pages
263–272, Pisa, Italy, 2008.

[5] A. Paterek. Improving regularized singular value
decomposition for collaborative filtering. In Proc. of
KDD Cup Workshop at SIGKDD-07, 13th ACM Int.
Conf. on Knowledge Discovery and Data Mining, pages
39–42, San Jose, California, USA, 2007.

[6] I. Pilászy, D. Zibriczky, and D. Tikk. Fast ALS-based
matrix factorization for explicit and implicit feedback
datasets. In Proceedings of the fourth ACM conference
on Recommender Systems, RecSys ’10, pages 71–78,
Barcelona, Spain, 2010.

[7] S. Rendle, C. Freudenthaler, Z. Gantner, and
L. Schmidt-Thieme. BPR: Bayesian personalized
ranking from implicit feedback. In Proc. of the 25th
Conf. on Uncertainty in Artificial Intelligence, UAI ’09,
pages 452–461, 2009.
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